Y : She R iy

Cov§

Not every Web engineer
(or software engineer)
has arfstic (cesthetic)
alent. if you fall info
this category, hire an
experienced graphic
designer for aesthetic
design work.

CHAPTER 19 DESIGN FOR WEBAPPS 573

10.

11.

ated to depict how the interface responds to user interaction. Content ob-
jects should be identified (even if they have not yet been designed and de-
veloped), WebApp functionality should be shown, and navigation links
should be indicated.

Refine interface layout and storyboards using input from aesthetic
design. Rough layout and storyboarding is completed by Web engineers,
but the aesthetic look and feel for a major commercial site is often devel-
oped by artistic, rather than technical, professionals.

Identify user interface objects that are required to implement the in-
terface. This task may require a search through an existing object library to

find those reusable objects (classes) that are appropriate for the WebApp in-

terface. In addition, any custom classes are specified at this time.

Develop a procedural representation of the user’s interaction with
the interface. This optional task uses UML sequence diagrams and/or ac-
tivity diagrams (discussed in Chapter 18) to depict the flow of activities (and
decisions) that occur as the user interacts with the WebApp.

Develop a behavioral representation of the interface. This optional
task makes use of UML state diagrams (discussed in Chapter 18) to repre-
sent state transitions and the events that cause them. Control mechanisms
(i.e., the objects and actions available to the user to alter a WebApp state)
are defined.

Describe the interface layout for each state. Using design information
developed in Tasks 2 and 5, associate a specific layout or screen image with
each WebApp state described in Task 9.

Refine and review the interface design model. Review of the interface
should focus on usability (Chapter 12).

It is important to note that the final task set chosen by a Web engineering team must
be adapted to the special requirements of the application that is to be built.

Aesthetic design, also called graphic design, is an artistic endeavor that complements
the technical aspects of Web engineering. Without it, a WebApp may be functional,
but unappealing. With it, a WebApp draws its users into a world that embraces them
on a visceral, as well as an intellectual, level.

But what is aesthetic? There is an old saying, “beauty exists in the eye of the be-
holder.” This is particularly appropriate when aesthetic design for WebApps is con-
sidered. To perform effective aesthetic design, we again return to the user hierarchy
developed as part of the analysis model (Chapter 18) and ask, who are the WebApp's
users and what “look” do they desire?

574

PART THREE APPLYING WEB ENGINEERING

quidt[y evaluate o site by visual design alone.”

Stanford Guidelines for Web Cres

19.4.1 Layout Issues

Every Web page has a limited amount of “real estate” that can be used to support non-
functional aesthetics, navigation features, information content, and user-directed
functionality. The “development” of this real estate is planned during aesthetic design.
Like all aesthetic issues, there are no absolute rules when screen layout is de-
signed. However, a number of general layout guidelines are worth considering:

Don’t be afraid of white space. 1t is inadvisable to pack every square inch of a
Web page with information. The resulting clutter makes it difficult for the user to
identify needed information or features and creates visual chaos that is not pleas-
ing to the eye.

Emphasize content. After all, that's the reason the user is there. Nielsen [NIE0O]
suggests that the typical Web page should be 80 percent content with the remain-
ing real estate dedicated to navigation and other features.

Organize layout elements from top-left to bottom-right. The vast majority of users
will scan a Web page in much the same way as they scan the page of a book—top-left
to bottom-right.2 If layout elements have specific priorities, high-priority elements
should be placed in the upper-left portion of the page real estate.

Group navigation, content, and function geographically within the page. Humans
look for patterns in virtually all things. If there are no discernable patterns within a
Web page, user frustration is likely to increase (due to unnecessary searching for
needed information).

Don’t extend your real estate with the scrolling bar. Although scrolling is often
necessary, most studies indicate that users would prefer not to scroll. It is better to
reduce page content or to present necessary content on multiple pages.

Consider resolution and browser window size when designing layout. Rather than
defining fixed sizes within a layout, the design should specify all layout items as a
percentage of available space [NIEQO].

19.4.2 Graphic Design Issues

Graphic design considers every aspect of the look and feel of a WebApp. The graphic
design process begins with layout (Section 19.4.1) and proceeds into a consideration
of global color schemes, typefaces, sizes, and styles, the use of supplementary me-
dia (e.g., audio, video, animation), and all other aesthetic elements of an application.
The interested reader can obtain design tips and guidelines from many Web sites that

8 There are exceptions that are cultural and language-based, but this rule does hold for most users.

CHAPTER 19 DESIGN FOR WEBAPPS 575
are dedicated to the subject (e.g., www.graphic-design.com, www.grantasticde-

signs.com, www.wpdfd.com) or from one or more print resources (e.g., [BAGO1],
[CLOO1], or [HEI02]).

Well-Designed Web Sites

Sometimes, the best way to understand good www.pbs.org/riverofsong—a television series for public
WebApp design is fo look at a few examples. TV and radio about American music.
In his article, “The Top Twenty Web Design Tips,” Marcelle www.RKDINC.com—a design firm with an on-line
Toor (http://www.graphic-design.com/Web/feature/ portfolio and good design tips.
tips.html) suggests the following Web sites as examples of ~ www.commarts.com/career/index.html—Communication
good graphic design: Arts magazine, a frade periodical for graphic

designers. A good source for other well-designed sites.
www.btdnyc.com—a design firm headed by Beth
Toudreau.

www.primo.com—a design firm headed by Primo Angeli.
www.workbook.com—this site showcases work by
illustrators and designers.

N /

Content design focuses on two different design issues, each addressed by individuals
with different skill sets. Content design develops a design representation for content
objects and represents the mechanisms required to instantiate their relationships to
one another. This design activity is conducted by Web engineers.

In addition, content design is concerned with the representation of information
within a specific content object—a design activity that is conducted by copywriters,
graphic designers, and others who generate the content to be used within a WebApp.

MMMMMMWM(MM they can tlwrhtmmmwhdmhwdihmﬁ
ing of words and pictures.” ,

19.5.1 Content Objects

The relationship between content objects defined as part of the WebApp analysis
model (e.g., Figure 18.3) and design objects representing content is analogous to the
relationship between analysis classes and design components described in Chapter
11. In the context of Web engineering, a content object is more closely aligned with a
data object for conventional software. A content object has attributes that include
content specific information (normally defined during WebApp analysis modeling)
and implementation specific attributes that are specified as part of design.

As an example, consider the analysis class developed for the SafeHome
e-commerce system named ProductComponent that was developed in Chapter 18
and represented as shown in Figure 19.4. In Chapter 18, we noted an attribute description

576

PART THREE APPLYING WEB ENGINEERING

Design repre-
sentation of
content objects

ProductComponent

partNumber
partName
partType
description !
price

-t Is part of

createNewltem()
displayDescription()
display TechSpec

l I I I

Sensor I Camera I Control Panel
4 ‘e—

I
i

that is represented here as a design class named CompDescription composed of
five content objects: MarketingDescription, Photograph, TechDescription,
Schematic, and Video shown as shaded objects noted in the figure. Information con-
tained within the content object is noted as attributes. For example, Photograph (a .jpg
image) has the attributes horizontal dimension, verfical dimension, and border style.

UML association and an aggregation’ may be used to represent relationships
between content objects. For example, the UML association shown in Figure 19.4 in-
dicates that one CompDescription is used for each instance of the ProductCom-
ponent class. CompDescription is composed of the five content objects shown.
Howéver, the multiplicity notation shown indicates that Schematic and Video are
optional (0 occurrences are possible), one MarketingDescription and TechDe-
scription is required, and one or more instances of Photograph is used.

19.5.2 Content Design Issues

Once all content objects are modeled, the information that each object is to deliver
must be authored and then formatted to best meet the customer’s needs. Content au-
thoring is the job of specialists who design the content object by providing an out-
line of information to be delivered and an indication of the types of generic content

9 Both of these representations are discussed in Chapter 8.

ﬁpwcs‘

Users tend to tolerate
vertical scrolling more
readily than horizontal
scrolling. Avoid wide
page formats.

—l19.6 ARCHITECTURE DESIGN

CHAPTER 19 DESIGN FOR WEBAPPS 577

objects (e.g., descriptive text, graphic images, photographs) that will be used to de-
liver the information. Aesthetic design (Section 19.4) may also be applied to repre-
sent the proper look and feel for the content.

As content objects are designed, they are “chunked” [POW00] to form WebApp
pages. The number of content objects incorporated into a single page is a function
of user needs, constraints imposed by download speed of the Internet connections,
and restrictions imposed by the amount of scrolling that the user will tolerate.

Architecture design is tied to the goals established for a WebApp, the content to be
presented, the users who will visit, and the navigation philosophy that has been es-
tablished. The architectural designer must identify content architecture and WebApp
architecture. Content architecture'® focuses on the manner in which content objects
(or composite objects such as Web pages) are structured for presentation and navi-
gation. WebApp architecture addresses the manner in which the application is struc-
tured to manage user interaction, handle internal processing tasks, effect navigation,
and present content.

“[The orchitectural structure of o well designed site is not always apparent to the user—nor should it be.”
: Thomas Powell

In most cases, architecture design is conducted in parallel with interface, aes-
thetic, and content design. Because the WebApp architecture may have a strong in-
fluence on navigation, the decisions made during this design activity will influence
work conducted during navigation design.

19.6.1 Content Architecture

The design of content architecture focuses on the definition of the overall hyperme-
dia structure of the WebApp. The design can choose from four different content
structures [POWOQ0O0]:

Linear structures (Figure 19.5) are encountered when a predictable sequence of
interactions (with some variation or diversion) is common. A classic example
might be a tutorial presentation in which pages of information along with related
graphics, short videos, or audio are presented only after prerequisite information
has been presented. The sequence of content presentation is predefined and gen-
erally linear. Another example might be a product order entry sequence in which
specific information must be specified in a specific order. In such cases, the struc-
tures shown in Figure 19.5 are appropriate. As content and processing become
more complex, the purely linear flow shown on the left of the figure gives way to

10 The term information architecture is also used to connote structures that lead to better organization,
labeling, navigation, and searching of content objects.

578

PART THREE APPLYING WEB ENGINEERING

Linear
structures

linear Linear Linear
with with
optional flow diversions

Grid structure

more sophisticated linear structures in which alternative content may be invoked
or a diversion to acquire complementary content (structure shown on the right side
of Figure 19.5) occurs.

Grid structures (Figure 19.6) are an architectural option that can be applied when
WebApp content can be organized categorically in two (or more) dimensions. For ex-
ample, consider a situation in which an e-commerce site sells golf clubs. The hori-
zontal dimension of the grid represents the type of club to be sold (e.g., woods, irons,
wedges, putters). The vertical dimension represents the offerings provided by vari-
ous golf club manufacturers. Hence, a user might navigate the grid horizontally to
find the putters column and then vertically to examine the offerings provided by
those manufacturers that sell putters. This WebApp architecture is useful only when
highly regular content is encountered [POW00].

CHAPTER 19 DESIGN FOR WEBAPPS 579

Ficure 19.7

Hierarchical
structure

Hierarchical structures (Figure 19.7) are undoubtedly the most common WebApp
architecture. Unlike the partitioned software hierarchies discussed in Chapter 10 that
encourage flow of control only along vertical branches of the hierarchy, a WebApp
hierarchical structure can be designed in a manner that enables (via hypertext
branching) flow of control horizontally, across vertical branches of the structure.
Hence, content presented on the far left-hand branch of the hierarchy can have hy-
pertext links that lead to content that exists in the middle or right-hand branch of the
structure. It should be noted, however, that although such branching allows rapid
navigation across WebApp content, it can lead to confusion on the part of the user.

A networked or “pure web” structure (Figure 19.8) is similar in may ways to the ar-
chitecture that evolves for object-oriented systems. Architectural components (in
this case Web pages) are designed so that they may pass control (via hypertext links)
to virtually every other component in the system. This approach allows considerable
navigation flexibility, but at the same time can be confusing to a user.

The architectural structures discussed in the preceding paragraphs can be combined
to form composite structures. The overall architecture of a WebApp may be hierarchical,
but part of the structure may exhibit linear characteristics, while another part of the ar-
chitecture may be networked. The goal for the architectural designer is to match the
WebApp structure to the content to be presented and the processing to be conducted.

19.6.2 WebApp Architecture

WebApp architecture describes an infrastructure that enables a Web-based system or
application to achieve its business objectives. Jacyntho and his colleagues [JAC02]
describe the basic characteristics of this infrastructure in the following manner:

Applications should be built using layers in which different concerns are taken into
account; in particular, application data should be separated from the page’s contents

580 PART THREE APPLYING WEB ENGINEERING

Ficure 19.8

Network
structure
, N, |
~ u
- -
u u
Y
B
]
(navigation nodes) and these contents, in turn, should be clearly separated from the in-
terface look-and-feel (pages).
The authors suggest a three-layer design architecture that decouples interface from
navigation and from application behavior, and argue that keeping interface, appli-
cation, and navigation separate simplifies implementation and enhances reuse.
% The Model-View-Controller (MVC) architecture [KRA88]'! is one of a number of sug-

gested WebApp infrastructure models that decouples the user interface from the
POINT S : : :

The MVC architectus WebApp functionality and informational content. The model (sometimes referred to as
decouples the user the “model object”) contains all application specific content and processing logic, in-
interfoce from WebApp ~ cluding all content objects, access to external data/information sources, and all pro-
functionality ond cessing functionality that are application specific. The view contains all interface
information conten’. specific functions and enables the presentation of content and processing logic, in-
cluding all content objects, access to external data/information sources, and all pro-

cessing functionality required by the end-user. The controller manages access to the

model and the view and coordinates the flow of data between them. In a WebApp, “view

is updated by the controller with data from the model based on user input” [WMTO2].

* A schematic representation of the MVC architecture is shown in Figure 19.9.

Referring to the figure, user requests or data are handled by the controller. The

controller also selects the view object that is applicable based on the user request.

Once the type of request is determined, a behavior request is transmitted to the

model, which implements the functionality or retrieves the content required to ac-

commodate the request. The model object can access data stored in a corporate

database, as part of a local data store or as a collection of independent files. The data

developed by the model must be formatted and organized by the appropriate view

11 It should be noted that MVC is actually an architectural design pattern developed for the Smalltalk
environment (see http://www.cetus-links.org/0o_smalltalk html) and can be used for any inter-
active application.

CHAPTER 19 DESIGN FOR WEBAPPS 581

m The MVC architecture (adapted from [JAC02])

Browser

User
request
or data

(state change)

I
|
I
I
|
Behavior request :
'
!
I
|
I

Update request 1| External data

object and then transmitted from the application server back to the client-based
browser for display on the customer’s machine.

In many cases, WebApp architecture is defined within the context of the develop-
ment environment in which the application is to be implemented (e.g., ASP.net, JWAA,
or J2EE). The interested reader should see [FOWO03] for further discussion of modern de-
velopment environments and their role in the design of Web application architectures.

Once the WebApp architecture has been established and the components (pages,
scripts, applets, and other processing functions) of the architecture have been iden-
tified, the designer must define navigation pathways that enable users to access
WebApp content and functions. To accomplish this, the designer should (1) identify
the semantics of navigation for different users of the site, and (2) define the me-
chanics (syntax) of achieving the navigation.

“Just wait, Gretel, until the moon rises, and then we shall see the crumbs of bread which | have sirewn about, they
. will show us our way home ogain.” ‘
i from Housel and Gretel

19.7.1 Navigation Semantics

Like many Web engineering activities, navigation design begins with a consideration of
the user hierarchy and related use-cases (Chapter 18) developed for each category of
user (actor). Each actor may use the WebApp somewhat differently and therefore have
different navigation requirements. In addition, the use-cases developed for each actor

582

%N
e
POINT
ANSU describes
the navigation
requirements for each
use-case. In essence,
the NSU shows how
an actor moves
between content
objects or WebApp
functions.

PART THREE APPLYING WEB ENGINEERING

will define a set of classes that encompass one or more content objects or WebApp

functions. As each user interacts with the WebApp, she encounters a series of naviga-

tion semantic units (NSUs)—"a set of information and related navigation structures that

collaborate in the fulfillment of a subset of related user requirements” [CACO02].
Gnaho and Larcher [GNA99] describe the NSU in the following way:

The structure of a NSU is composed of a set of navigational sub-structures that we call
ways of navigating (WoN). A WoN represents the best navigation way or path for users
with certain profiles to achieve their desired goal or sub-goal. Therefore, the concept of
WoN is associated to the concept of User Profile.

The structure of a WoN is made out of a set of relevant navigational nodes (NN) con-
nected by navigational links, including sometimes other NSUs. That means that NSUs may
themselves be aggregated to form a higher-level NSU, or may be nested to any depth.

To illustrate the development of an NSU, consider the use-case, select SafeHome
components, described in Section 18.1.2 and reproduced here:

Use-case: select SafeHome components

The WebApp will recommend product components (e.g., control panels, sensors,
cameras) and other features (e.g., PC-based functionality implemented in software) for
each room and exterior entrance. If [request alternatives, the WebApp will provide them,

if they exist. I will be able to get descriptive and pricing information for each product com-
ponent. The WebApp will create and display a bill-of-materials as I select various com-

ponents. I'll be able to give the bill-of-materials a name and save it for future reference
(see use-case: save configuration).

The underlined items in the use-case description represent classes and content objects
that will be incorporated into one or more NSUs that will enable a new customer to
perform the scenario described in the select SafeHome components use-case.

Figure 19.10 depicts a partial semantic analysis of the navigation implied by the
select SafeHome component use-case. Using the terminology introduced earlier, the
figure also represents a way of navigating (WoN) for the SafeHomeAssured.com
WebApp. Important problem domain classes are shown along with selected content
objects (in this case the package of content objects named CompDescription, an attrib-
ute of the ProductComponent class). These items are navigation nodes. Each of
the arrows represents a navigation link'? and is labeled with the use-initiated action
that causes the link to occur.

The WebApp designer creates a NSU for each use-case associated with each user
role [GNA99]. For example, a new customer (Figure 18.1) may have three different
use-cases, all resulting in access to different information and WebApp functions. A
NSU is created for each goal.

During the initial stages of navigation design, the WebApp content architecture is
assessed to determine one or more WoN for each use-case. As noted above, a WoN

12 These are sometimes referred to as navigation semantic links (NSL) [CACO02].

CHAPTER 19 DESIGN FOR WEBAPPS 583

<<navigation link>>
request alternative

<<navigation link>>- <<navigation link>>

<<navigation link>> recommend component{s) | ProductComponent how ProductComponent
select Room

7

<<navigation |ink>> B”OfM H
] ;) terials
view BillOfMaterials : <

ﬁovn:‘

In most situations,
choose either hori
zontal or vertical navi-
gation mechanisms,
but not both.

Room

<<navigation link>> <<navigation link>>
return to Room <<navigation link>> show description
purchase ProductComponent

T e

- Marke’rngescnphon

photog raph

<<navigation link>>
purchase ProductComponent |

{techDescription

v;deo

[’

identifies navigation nodes (e.g., content) and the links that enable navigation be-
tween them. The WoN are then organized into NSUs.

bleen of Web site navigation s conceptual, technical, spatial, philosophical and logistic. Consequently, -
i o coll for complex improvisational combinations of or, science, and organizational peychalogy.”

19.7.2 Navigation Syntax

As design proceeds, the mechanics of navigation are defined. Among many possible
options are:

Individual navigation link—text-based links, icons, buttons and switches, and
graphical metaphors.

Horizontal navigation bar—lists major content or functional categories in a
bar containing appropriate links. In general, between four and seven cate-
gories are listed.

Vertical navigation column— (1) lists major content or functional categories,

or (2) lists virtually all major content objects within the WebApp. If the
second option is chosen, such navigation columns can “expand” to present
content objects as part of a hierarchy.

Tabs—a metaphor that is nothing more than a variation of the navigation bar
or column, representing content or functional categories as tab sheets that
are selected when a link is required.

Site maps—provide an all-inclusive table of contents for navigation to all
content objects and functionality contained within the WebApp.

584 PART THREE APPLYING WEB ENGINEERING

e In addition to choosing the mechanics of navigation, the designer should also
ADVICE‘ establish appropriate navigation conventions and aids. For example, icons and
The site map should be ~ graphical links should look “clickable” by beveling the edges to give the image a

”‘;e:“z:z fnr:am ‘2’9,?' three-dimensional look. Audio or visual feedback should be designed to provide
page. The map itse . o o ,
should be organized so the user with an indication that a navigation option has been chosen. For text-

that the structure of based navigation, color should be used to indicate navigation links and to provide
WebApp information s an indication of links already traveled. These are but a few of dozens of design
readily apparent. conventions that make navigation user-friendly.

Modern Web applications deliver increasingly sophisticated processing functions
that (1) perform localized processing to generate content and navigation capability
in a dynamic fashion; (2) provide computation or data processing capability that are
appropriate for the WebApp’s business domain; (3) provide sophisticated database
query and access; (4) establish data interfaces with external corporate systems. To
achieve these (and many other) capabilities, the Web engineer must design and con-
struct program components that are identical in form to software components for
conventional software.

In Chapter 11, we consider component-level design in some detail. The design
methods discussed in Chapter 11 apply to WebApp components with little, if any,
modification. The implementation environment, programming languages, and
reusable patterns, frameworks, and software may vary somewhat, but the overall
design approach remains the same.

Design patterns that are used in Web engineering encompass two major classes:
(1) generic design patterns that are applicable to all types of software (e.g., [BUS96]
and [GAM95]) and (2) hypermedia design patterns that are specific to WebApps.

Generic design patterns have been discussed in Chapter 9. A number of hypermedia
patterns catalogs and repositories can be accessed via the Internet.'?

”:pdllm Bo hoo-pm rule which expresses a relationship between a certain context, a problem, and a solution.”
Christopher ch-in

As we noted earlier in this book, design patterns are a generic approach for solv-
ing some small design problem that can be adapted to a much wider variety of spe-
cific problems. In the context of Web-based systems German and Cowan [GER0O]
suggest the following patterns categories:

13 See the sidebar at the end of this section.

CHAPTER 19 DESIGN FOR WEBAPPS 585

Architectural patterns. These patterns assist in the design of content and
WebApp architecture. Sections 19.6.1 and 19.6.2 present architectural patterns for
content and WebApp architecture. In addition, many related architectural patterns
are available (e.g., Java Blueprints at java.sun.com/blueprints/) for Web engineers
who must design WebApps in a variety of business domains,

Component construction patterns. These patterns recommend methods for com-
bining WebApp components (e.g., content objects, functions) into composite compo-
nents. When data processing functionality is required within a WebApp, the
architectural and component-level design patterns proposed by [BUS96], [GAM95], and
others are applicable.

Navigation patterns. These patterns assist in the design of NSUs, navigation
links, and the overall navigation flow of the WebApp.

Presentation patterns. These patterns assist in the presentation of content as it
is presented to the user via the interface. Patterns in this category address how to or-
ganize user interface control functions for better usability; how to show the rela-
tionship between an interface action and the content objects it affects; how to
establish effective content hierarchies; and many others.

Behavior/user interaction patterns. These patterns assist in the design of user-
machine interaction. Patterns in this category address how the interface informs the
user of the consequences of a specific action; how a user expands content based on
usage context and user desires; how to best describe the destination that is implied by
a link; how to inform the user about the status of an on-going interaction and others.

Sources of information on hypermedia design patterns have expanded dramati-
cally in recent years. Interested readers should see [GAR97], [PER99], and [GERO0O].

SorTwARE TooLs

Hypermedia Design Patterns Repositories

"

Q The IAWiki Web site (http://iawiki.net/ Improving Web Information Systems with
WebsitePatterns) is a collaborative discussion Navigational Patterns

space for information architects that contains many useful ~ http://www8.0rg/w8-papers/ 5b-hypertext-

resources. Among them are links to a number of usehul media/improving/improving.html

hypermedia patterns catalogs and repositories. Hundreds ~ An HTML 2.0 Pattern Language

of design patterns are represented: htip:/ /www.anamorph.com/docs/patterns/default. himl

Common Ground
http:/ /www.mit.edu/ ~tidwell/interaction_patterns. himl
Patterns for Personal Web Sites

Hypermedia Design Patterns Repository
http:/ /www.designpattern. lu.unisi.ch/

InteractionPatterns by Tom Erickson htip:/ /www.rdrop.com/~half/Creations/Writings/Web.
http:/ /www.pliant.org/personal/Tom_Erickson/Interaction .

: : : - patterns/index. html

Patterns.html

Indexing Pattern Language
http:/ /www.cs.brown.edu/~rms/InformationStructures/In

Qp://www.weﬁe,com/poﬁerns/ dexing/Overview.himl /

Web Design Patterns by Martijn vanWelie

586

PART THREE APPLYING WEB ENGINEERING

A number of design methods for Web applications have been proposed over the past
decade. To date, no single method has achieved dominance. In this section we pres-
ent a brief overview of one of the most widely discussed WebApp design methods—
OOHDM. '

Object-Oriented Hypermedia Design Method (OOHDM) was originally proposed by
Daniel Schwabe and his colleagues [SCH95, SCH98]. OOHDM is composed of four
different design activities: conceptual design, navigational design, abstract inter-
face design, and implementation. A summary of these design activities is shown in
Figure 19.11 and discussed briefly in the sections that follow.

19.10.1 Conceptual Design for OOHDM

OOHDM conceptual design creates a representation of the subsystems, classes, and
relationships that define the application domain for the WebApp. UML may be used'®
to create appropriate class diagrams, aggregations and composite class representa-

m Summary of the OOHDM method (adapted from [SCH95])

14 A comprehensive comparison of 10 hypermedia design methods has been developed by Koch
[KOC99].

15 OOHDM does not prescribe a specific notation; however, the use of UML is common when this
method is applied.

